The Characterization of Lucky Edge Coloring in Graphs

A. Anantayasethi ${ }^{1}$, J. Koppitz ${ }^{2}$, S. Worawiset ${ }^{3}$ and K. Saengsura ${ }^{4}$

1,4 Algebra and Application Research Unit, Mahasarakham University, Mahasarakham 44150, Thailand
${ }^{2}$ Institute of Mathematics and Informatics, Bulgaria Academy of Sciences, 14476 Sofia, Bulgaria
${ }^{3}$ Mathematics Department, Faculty of Science, Khon Kaen University, Khon Kaen, 40000, Thailand.

January 26, 2023

Outline

Outline

(1) Abstract
(2) Basic Concepts and Notations
3) Properties and Characterization of Lucky Colorings
(4) The Lucky Number of rooted tree $T_{m, h}$

Abstract

Basic Concepts and Notations

Outline

(1) Abstract
(2) Basic Concepts and Notations
(3) Properties and Characterization of Lucky Colorings

44 The Lucky Number of rooted tree $T_{m, h}$
A. Anantayasethi ${ }^{1}$, J. Koppitz ${ }^{2}$, S. Worawiset ${ }^{3}$ and K. Saengsu The Characterization of Lucky Edge Coloring in Graphs

Abstract

The lucky edge coloring of graph G is a proper edge coloring which is induced by a vertex coloring such that each edge is labeled by the sum of its vertices. The least integer k for which G has a lucky edge coloring in the set $\{1,2, \ldots, k\}$ is called lucky number, denoted by $\eta(G)$. The lucky numbers were already calculated for a large number of graphs, but not yet for trees. In this paper, we provide the characterization of lucky edge coloring and calculate the lucky number for graphs which can be regarded as complete m-ary trees.

Outline

(1) Abstract
(2) Basic Concepts and Notations
(3) Properties and Characterization of Lucky Colorings

4 The Lucky Number of rooted tree $T_{m, h}$
A. Anantayasethi ${ }^{1}$, J. Koppitz ${ }^{2}$, S. Worawiset ${ }^{3}$ and K. Saengsu The Characterization of Lucky Edge Coloring in Graphs

Basic Concepts and Notations

A graph G is an ordered pair $(V(G), E(G))$, consisting of

- nonempty set $V(G)$ - set of vertices
- $E(G)$ - set of unoredered pair of vertices
(an element of $E(G)$ is called edge of G)
convenient to write edge $u v$ instead of edge $\{u, v\}$

Basic Concepts and Notations

$\Delta(G)$ - maximum degree of all vertices in graph G
$\Delta(G)=\max \{\mathrm{d}(\mathrm{u}) \mid u \in V(G)\}$
$N(u)$ - neighborhood of u
$N(u)=\{v \in V(G) \mid u v \in E(G)\}$

Coloring

vertex coloring - mapping from vertex set assign to set of colors T

$$
f: V(G) \rightarrow T
$$

Normally, take $T=\{1,2,3, \ldots, k\}$
edge coloring - mapping from edge set assign to set of colors

$$
f: E(G) \rightarrow\{1,2, \ldots, k\}
$$

Lucky Coloring

\mathbb{N} - set of positive integers
for a vertext coloring $f: V(G) \rightarrow \mathbb{N}$,
the induced edge coloring f^{*}

$$
f^{*}: E(G) \rightarrow \mathbb{N}
$$

defined by

$$
f^{*}(u v):=f(u)+f(v) \quad \text { for any } u v \in E(G)
$$

is called lucky coloring if f^{*} is proper coloring

Outline

(1) Abstract
(2) Basic Concepts and Notations
(3) Properties and Characterization of Lucky Colorings
(4) The Lucky Number of rooted tree $T_{m, h}$
A. Anantayasethi ${ }^{1}$, J. Koppitz ${ }^{2}$, S. Worawiset ${ }^{3}$ and K. Saengsu The Characterization of Lucky Edge Coloring in Graphs

Theorem 3.1

Let f be a vertex coloring of a graph G. The the following statements are equivalent:
(i) f^{*} is a lucky coloring of G.
(ii) $f\left(u_{1}\right) \neq f\left(u_{2}\right)$ for all $u_{1}, u_{2} \in N(v), u_{1} \neq u_{2}$ and all $v \in V(G)$.
(iii) $|N(v)|=|f(N(v))|$ for all $v \in V(G)$.

Proposition3.2

Let f be a vertex coloring of a graph G. If f^{*} is a lucky coloring of G then $\eta(G)>\left|R_{f}\right| \geq \Delta(G)$.

Outline

(1) Abstract
2) Basic Concepts and Notations
(3) Properties and Characterization of Lucky Colorings
(4) The Lucky Number of rooted tree $T_{m, h}$

[^0]
Remark 4.1

The lucky number of $T_{m, 1}$ is $m+1$.

Proposition 4.2

Let $T_{m, 2}$ be the complete m-ary rooted tree of hight 2 . Then $\eta\left(T_{m, 2}\right)=2 m+1$.

Proposition 4.3

Let $T_{m, 3}$ be the complete m-ary rooted tree of hight 3 . Then $\eta\left(T_{m, 3}\right)=2 m+1$

Proposition 4.4

Let $T_{m, h}$ be an m-ary rooted tree with hight $h \geq 4$. Then $T_{m, h}$ is ($2 m+2$)-lucky.

Proposition 4.5

Let $T_{m, h}$ be and m-ary rooted tree with hight h. If $T_{m, h}$ contains a complete m-ary tree with hight greater or equal 4 , then $\eta\left(T_{m, h}\right)=2 m+2$.

Theorem 4.6

Let $h \geq 4$ and let $T_{m, h}$ be a complete m-ary rooted tree. Then $\eta\left(T_{m, h}\right)=2 m+2$.

Reference

[1] A. S. Babu, N. Ramya and K. Rangarajan, On Lucky Edge Labeling of Splitting Graph and Snake Graph, IJSIMR. 5(8) (2019) 638-640.
[2] S. Babu and N. Ramya, Lucky Edge Labeling of H-Graph, n-Copies of H-Graph, Duplication of Theta Graph and Path Union of Theta Graphs, Annals of R. S. C. B., 2(25) (2021) 4480-4497. [3] R. M. Chitra and A.N. Muruga, Lucky Edge Labeling of Star Related Graph, Journal of Computer and Mathematical Science, 9(9) (2018) 1124-1131.
[4] E. Esakkiammal, K. Thirusangu and S. Seethalakshmi, Lucky Edge Labeling of H-subdivision Graph, Annal of Pure and Applied Mathematics, 3(14) (2017) 601-610.
[5] E. Esakkiammal, K. Thirusangu and S. Seethalakshmi, Lucky Edge Labeling of Super subdivision of Star and Wheel Graph, Int. national Journal of Pure and Applied Mathematics, 7 (113) (2017)

Reference

[6] A.N. Murugan and R.M. Chitra, Lucky Edge Labeling of P_{n}, C_{n} and Corona of P_{n}, C_{n}, IJSIMR, 2(8) (2014) 710-718.
[7] A.N. Murugan and R.M. Chitra, Lucky Edge Labeling of H-graph, A Multi-Disciplinary Refereed Journal, (8) (2015) 75-85.
[8] A.N. Murugan and R.M. Chitra, Lucky Edge Labeling of Triangular graphs, IJSIMR, 2(3) (2016), 116-118. [9] N. Ramya and R. Shalini, On Lucky Edge Labeling of some Trees, J. Mech. Cont. Q Math. Sci., Specail Issue, (2) (2019) 594-601.
[10] R. Sridevi and S. Ragavi, Lucky Edge Labeling of K_{n} and Special Types of Graph, Int. Journal of Mathematics and its Applications, 1(4) (2016) 125-131.

THANK YOU FOR YOUR ATTENTION!

[^0]: A. Anantayasethi ${ }^{1}$, J. Koppitz ${ }^{2}$, S. Worawiset ${ }^{3}$ and K. Saengsu The Characterization of Lucky Edge Coloring in Graphs

